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Viscosity coefficients of smectics C* 
by M. A. OSIPOVt*$ T. J. SLUCKINt and E. M. TERENTJEVS 
i Department of Mathematical Studies, University of Southampton, 

Southampton SO17 lBJ, England 
$ Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, England 

(Received 23 September 1994; accepted 17 November 1994) 

By extending the statistical theory of rheological properties of nematics, we derive elementary 
expressions for all phenomenological viscosity coefficients of ferroelectric smectics C* in terms 
of a small number of parameters. The results permit estimates of signs and ratios of viscosity 
coefficients and their tilt angle dependence. It is shown that a number of coefficients generally 
appear to be very small and can be neglected in practical calculations. We discuss also the 
influence of molecular biaxiality on the rotational viscosity of smectics C. 

1. Introduction 
Dynamical properties of smectic liquid crystals are 

more complicated than those of simple nematics because 
of the lowest symmetry of smectic phases. 'The detailed 
understanding of these properties is, however, extremely 
important in a technological context. In particular, there is 
a growing interest in the rheological properties of 
ferroelectric smectics C*, which are regarded as very 
promising materials for low voltage display devices [ 11. In 
fact, ferroelectric liquid crystals can demonstrate the 
fastest response among all liquid crystal materials. This 
response is determined by the linear electro-optic effect in 
the chiral smectic C* phase. In the ferroelectric smectic C* 
phase the azimuthal molecular reorientation has no 
potential barrier and the corresponding switching time z of 
the director n in an external electric field E is determined 
by the balance of electric and viscous torques. This time 
is, therefore, proportional to the rotational viscosity 
coefficient y4 and inversely proportional to the spon- 
taneous polarization P,: 

The rotational viscosity ~4 is thus one of the most 
important parameters of ferroelectric liquid crystal 
materials. 

In general, rheological properties of smectic C liquid 
crystals are described by a large number of independent 
viscosity coefficients [2] which characterize different 
couplings between the director orientation and a flow. 
Recent theoretical analysis [3,4] has shown that the 
switching of the director in the smectic C* phase can be 
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accompanied by the so-called backflow which is related to 
a number of other viscosity coefficients. To describe the 
complete switching process it is therefore necessary to 
have some information about all viscosity coefficients of 
ferroelectric smectics, not only the azimuthal rotational 
viscosity y+. This information is important for the 
understanding of dynamics processes in real ferroelec- 
trics, and can be used to estimate the influence of backflow. 
We note that, at present, only the rotational viscosity y , ,~  has 
been measured for a few materials [5-71 and there is 
essentially no information about other viscosity 
coefficients of smectics C. 

In this paper we develop a simple statistical theory of 
the rheological properties of smectics C by extending the 
general approach introduced by Kuzui and Doi [8] and 
Osipov and Terentjev 191. This elementary theory will 
enable us to express all 20 viscosity coefficients of the 
smectic C phase in terms of a few parameters and to 
estimate the ratios and signs of these coefficients. In a 
previous paper [lo], two of the authors have already 
attempted to calculate the rotational viscosity y+. How- 
ever, these calculations were based on an over-simplified 
kinetic equation, leading to an incorrect expression for the 
rotational viscosity. The present paper corrects these 
errors and uses a more consistent theory to estimate the 
rotational viscosity. 

This paper is arranged as follows. In $ 2 ,  we discuss 
the phenomenological continuum expression for the 
viscous stress tensor and develop a statistical-mech- 
anical theory of the viscosity of smectics C. In $ 3  
we derive expressions for the symmetric and anti- 
symmetric parts of the stress tensor and present simple 
expressions for the Leslie coefficients of the smectic C 
phase. Finally in $ 4 we discuss the results and present our 
conclusions. 
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2. 
2.1. Continuum theory 

The energy dissipation in a flowing smectic C is 
determined by the viscous stress tensor rli which generally 
depends on the orientational and translational order 
parameters and on the fluid velocity gradient tensor. A 
phenomenological expression for t ,  has been proposed 
recently by Leslie [2 ]  with the framework of a continuum 
theory. In this theory the smectic layers are assumed to be 
of constant thickness and the tilt angle of the director with 
respect to the layer normal remains constant. These 
assumptions seem to be reasonable for a description of any 
real flow in a smectic C cell, provided that the system is 
not too close to a phase transition. 

The macroscopic stress tensor ti; can be written [2 ]  as 
a sum of the symmetric part 

Viscous stress tensor of the smectic C phase 

ti = j 4 i ,  + PIapaqDpflaiaj f Pz(Di@kaj f Dj@kai) 

+ j13CpcyDpqCiC, f /b(DikCkCj + DjkCkCt) 

+ /A~C~U,D,,(U;C; + u~c;) + I11(Aja; + A;u;) 

+ &(CiCJ + C;cJ + i3cfip(a,cj + UjCi )  

+ 
f K2[2~,c,D~,a,a; + apaqDp,(ajc, f a;Cj) ]  

I (DikakC; + DjkakCi + Dig*; + D j k ~ g i )  

+ K3[2UpCqDpqC;Cj + CpCqDpJUiC; f UjCi ) ]  

+ T~(C,U,  + Cj~i) + T~(A;c;  + A,c,) 

+ ZTncpApaial + 2z4cfipc;c/, ( 2 )  

and the antisymmetric part 

t: = J.I(Djkakai - Dikakaj) + i2(DjkCKi -- Dik~k~j )  

+ A ~ C , K Z , D , ~ ( U ~ C ~ , -  u/c,) + ;L4(A;a; - A~u;) 

+ ;&5(CJc; - C;C;) + ; L 6 C ~ , ( a i C ;  - ajc;) 

+ Zl(D,@kC, - DjkUkC;) + T2(D;kCkU; - DikC@j) 

+ T ~ u ~ u , D ~ ~ ( u ~ c ~  - u ~ c ; )  + T ~ c ~ c ~ D ~ , ( u ~ c ;  - u,c~) 

+ Zs(AjCi - A i ~ j  + Cjai - C;U;). ( 3 )  

Here the fluxes are represented by D,, the symmetric part 
of the velocity gradient tensor ui,] = &Jarj: 

2 0 ,  = vl,; + u ~ , ~  

and Wi,, the antisymmetric part of u;,;, related to the local 
angular velocity of the fluid: 

2 W . . = t , .  . - - .  . 

Vectors A; and Ci are covariant time derivatives of the 
smectic plane normal a, and the unit vector c, which is a 
projection of the director n onto the smectic plane: 

1J 1, I I .  1. 

A = b  - W..a: C . = e . -  w . . ~ .  
I I I ] / >  1 I I J J .  

2.2. Generul statistical approach 
Now let us consider the viscous stress tensor in the 

framework of the general statistical theory. In this context, 
the stress tensor (2), ( 3 )  can be defined as an ensemble 
average of the corresponding microscopic stress tensor t:. 
The microscopic stress tensor depends only on the 
dynamical variables of a fluid and describes the evolution 
of the microscopic momentum density p(r) [ l l ]  

P(R) = - V.tM(R). (4) 

The general expressin for the microscopic stress tensor tM 
can be obtained with the help of the microscopic equations 
of motion for individual particles. The microscopic stress 
tensor is determined by interparticle forces and can be 
expressed in terms of the pair interaction potential. The 
detailed derivation of the tensor tM for the fluid composed 
of spherical particles can be found, for example, in [ 1 I]. 
Recently an expression for the microscopic stress tensor 
t: has been derived also for a nematic fluid composed of 
rigid elongated particles [ 9 ] .  In the case of prolate uniaxial 
molecules, which are characterized by a unit vector e in 
the direction of the long axis, the tensor tM reads [ 9 ] :  

1 a 
v #  p de; 

+ 2 ef- U(ep, e‘, rUp) 6(R - rJ + t:,““ ( 5 )  

where $7 is the part of the stress tensor which does not 
depend on the orientational variables. Equation (5) is valid 
for a system of sufficiently elongated particles with 41 + IL, 
where 41 and II are the longitudinal and the transverse 
inertia moments, respectively. 

The macroscopic (continuum) stress tensor tt, can now 
be calculated by taking an ensemble average of (3, and 
can be written in the form 

t,(R) <tfy’> = 3pkTQ,jtR) 

wherc Q, is the nematic tensor order parameter and fi( 1,2) 
is the pair distribution function of molecules ‘ 1 ’  and ‘2’;  
p is the number density. 

It is important to emphasize here that the averaging in 
equation (6) is performed with a non-equilibrium pair 
distribution function f2( 1 ,2 )  which characterizes the 
flowing liquid crystal and which, therefore, depends on 
velocity gradients. 

2.3. Stress tensor of the srnectic C phase in the 
mean-jield approximation 

So far the expressions for the viscous stress tensor have 
been written in a very general form which can be used in 
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the description of any liquid crystal phase of rod-like 
molecules. The application of these general results to 
nematics has already been carried out in [9,12]. The 
description of the rheological properties of smectic phases 
is more complicated because it involves simultaneous 
averaging over the translational and orientational degrees 
of freedom. However, the theory can be dramatically 
simplified if one uses the approximation of perfect smectic 
order and takes into account that the intermolecular 
interaction is short-range. In this case the averaging over 
r12 in equation (6) can be performed separately for 
molecules which are in the same smectic plane, and for 
molecules which are in two neighbour planes [13,14]: 

ti@) = 3pk7'Qij{R) 

a 
W(e''',e(2',a), (7) 

with 

X U(e"',e'2),arii)f2(e('),ef2),arii;R), (8) 

where D is the fraction of nearest neighbours which are in 
the same smectic plane as a given molecule. The first term 
in equation (8) is a contribution from the neighbouring 
molecules, which are in the same smectic plane. For such 
molecules, the intermolecular vector rii is approximately 
parallel to the plane, (rij.a) = 0. The second term in 
equation (8) comes from the interaction of molecules 
which belong to the neighbour smectic planes. In this case 
rij =3 ar+ 

In the mean field approximation, the pair distribution 
function is expressed in terms of the one-particle 
distribution, fi( 1,2) = f i (  l)fi(2). In this approximation, 
equation (7) can be rewritten as 

tii(R) = p de(')fi(e(l), R)eF(e(')) (9) I 
with 

Here Um(e, a) is the effective mean field potential in the 
smectic C phase 

UMF(e('), a) = p de(2)~(e('), e('), a)fi(e('), R), ( 1  1) J 

where 

+ (1 - a) dr&U(e('), e('), ar12). (12) 

We note that the distribution function fi( 1) in equations (9) 
and (1 1)  corresponds to the flowing liquid crystal and 
differs from the equilibrium distribution function fin)( 1). 
The difference between the equilibrium and non- 
equilibrium distributions fro'(  1) and f i (  1) is obviously 
proportional to the small perturbation, in this case the 
velocity gradient tensor oiJ: 

(13) 

J 

fdl) = .f%1>[1 + h(1)l 

with the correction 

h(1) = hu(e('), a)vi,j. (14) 

Combining equations (9) and (13) yields the following 
expression for the viscous stress tensor in terms of the 
equilibrium distribution function f@'( 1) and the non- 
equilibrium correction h( 1): 

tii(R) = p def(')(e, a)h(e, a; R ) r  (15) 

where the mean-field microscopic stress tensor is given by 
equation (10) in which the effective mean-field potential 
UMF( 1) is determined by the equilibrium distribution 
function yo)( 1 ). 

Thus the viscous contribution to the macroscopic stress 
tensor is expressed in terms of the stationary correction to 
the one-particle distribution function h( 1), where the 
quantity h( 1) characterizes the deviation from the thermo- 
dynamic equilibrium in the flowing smectic C. This 
correction can now be obtained as a stationary solution of 
an appropriate kinetic equation. 

J 

2.4. Rotational diffusion equation for a molecule 
in the mean-Jeld potential 

In the molecular field approximation, the dynamics of 
a liquid crystal are determined by a rotational Brownian 
motion of a molecule in the mean-field potential. This 
motion is described by the rotational diffusion equation, 
which has the same form as in the nematic phase and only 
the mean field potential is different. The corresponding 
equation has been discussed in detail by Kuzui and Doi [8], 
and has also been derived from Langevin equations of 
motion in [9]. The diffusion equation can be written in the 
following dimensionless form: 

where a k  is the differential operator of infinitesimal 
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rotation of the molecular long axis e: 

with ErJk the antisymmetric Levi-Civita tensor; f i k  is the 
local angular velocity of the long uniaxial particle in the 
flowing fluid [S, 91 

p2- 1 
0 = +[V x v] - +(e. [V x v])e += [ e x  D-el .  (17) 

Here D is the symmetric part of the velocity gradient 
tensor, 20, = v,,, + v,,,, andp = Vd is the ratio of principal 
molecular dimensions (we assume p % 1 in this paper). In 
equation ( 16) we have used a dimensionless time z = t/z,, 
where z,, = iA /2  is the rotational velocity relaxation time 
[9] and ;1 is the ‘molecular’ friction coefficient. This 
coefficient will turn out to be the only model parameter of 
this theory. Kinetic equation (16) contains the small 
dimensionless parameter E = (IlkT)”*/I. < 1. 

The non-equilibrium correction h( 1) can now be 
determined from equation (16) using the stationary 
solution of (16) in the case of small velocity gradients q,,. 
We note that in the framework of this simple model, the 
only difference between the rotational dynamics in the 
nematic and in the smectic C phase lies in the mean-field 
potential, which exhibits the different symmetry of these 
phases. Thus, in the nematic phase the mean-field potential 
depends only on the angle between the director n and the 
molecular long axis e while in the biaxial smectic C phase 
it also depends on the local smectic plane normal a. 

In the next section we obtain explicit expressions for 
the symmetric and antisymmetric parts of the macroscopic 
stress tensor and estimate all Leslie coefficients of the 
smectic C phase. 

3. Leslie coefficients of the smectic C phase 

3.1. Symmetric part of the viscous stress tensor 
The simple statistical theory of viscosity employed in 

this paper is based on the general equation (9), (10) and 
(16), which have similar mathematical form for the 
nematic and smectic C phases. It is therefore possible to 
use directly some of the results already obtained in the 
theory of nematic viscosity [8,9]. In particular, one can 
calculate the symmetric part of the macroscopic stress 
tensor directly from equation (16) (see [8] for a more 
detailed discussion). Multiplying both sides of the kinetic 
equation (16) by the factor [elel - 4-dzJ] and integrating it 
over all orientations e, we arrive at the following result for 
the stationary case: 

- V,(e,e,> - wZa(eJe,))] (18) 

= -(ez- aeJ + eJ-)  ae, 

where we have used the property [XI that 

Ir ieax[f i ( l )ax~~~~~te ,P ,  - 36,) 

airMF auMF 

and the explicit form of perturbation A2 has been 
substituted to the left hand side of the diffusion equation 
(1 6). Here the averages are taken with the equilibrium 
one-particle distribution function f(’)(e, n, a). We note 
here that the smectic C phase is macroscopically biaxial 
and thus the orientational distribution of molecules must 
also be biaxial even in the case when the molecules 
themselves are uniaxial. In this case, the one-particle 
distribution function f“)( 1) depends on two macroscopic 
parameters. These are the nematic ordering tensor 
[sn ,  - +&,I and the tensor a,uJ, which determines the local 
orientation of the smectic planes. 

As a result, the average tensor (ele,) is not uniaxial (by 
contrast to the nematic phase) and can be written in the 
following general form: 

k e , >  = &J + S(nlnl - +&J) + P(m,m, - Uj), ( 19) 

where S is the nematic order parameter, P i s  the biaxial 
order parameter and the unit vectors m and 1 are normal 
to the director n; m l l l n .  The order parameters S and P 
can be defined as 

s = (i(e-n)2 - +); P = ([(e.rn)’ - (20) 

The parameter P reflects the additional ordering, imposed 
on the molecular long axes by the constraint of oblique 
layers. It can be also rewritten in the form 

(21) 

where cos w = (e. n) and q5 is the azimuthal angle in the 
plane perpendicular to n. The biaxial order parameter P 
characterizes the asymmetry of molecular long axes 
fluctuations around the director in the biaxial smectic C 
phase. Indeed, the parameter P must vanish when S = 1, 
because in the case of perfect orientational order (1) = 0 and 
P’(cos o) = 1. It then follows necessarily from equation 
(21) that P = 0. More detailed estimates of the biaxial 
order parameter are performed in the Appendix, in which 
we show that the parameter P appears to be very small 
when the nematic order parameter is close to unity: 

(22) 

when ( 1  - S ) 2  6 1 ,  where 0 is the tilt angle of the 

P = (sin’ w cos 24) 

P - (1 - s ) ~  sin2 0, 
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Viscosity coeficients of smectics C* 20 1 

director with respect to the smectic plane normal, 
cos 0 = (n-a). 

In the smectic C phase, the nematic order parameter is 
rather large ( S  = 0.8-0.9 [ 151) and hence the biaxial order 
parameter can be estimated as P- lo-’. This estimate 
shows that one can in fact neglect biaxiality of the 
distribution function in the evaluation of the averages 
( e g j )  and (e;eje,ep) in equation (18). In the case of the 
unixial distribution the relevant averages are 

(eiej) = 46, + S(n;nj - =&), 

(e;ejepeq) = rnln;njn,,n, + mz(n;njSfq + ninfSjq 

+ ninqSjp + n,np6iq + njnqb;,, + nfnq8g) 

+ m3(8ijSpq + Sipa jq  + SiqSjp), 

where 

ml = (P~(COS a)), m2 = S(S - (P~(COS a))) 

and 

m3 = &(I  - Y S  + ;(P4(COS a))). 

Here (P4(cosa)) is the equilibrium average of the 
Legendre polynomial of the fourth order. Inserting these 
expressions into equation (1 8) and returning to dimen- 
sional variables, we arrive at 

ts. = @ [ - 2 (P4)n;n,n,n~D,p 
lJ 2 P + 1  

- s ( n ; 4  + njN;], (23) 

where N; = ri - Wvnj. 
We can now transform equation (23) into the form 

(2) proposed by Leslie, using the substitution 
n = a cos 0 + c sin 0. This yields, after some algebra, the 
following simple expressions for the Leslie coefficients 
involved in equation (2): 

(24) 

p2-  1 
p2 = cro- cos2 0, 

p2+ 1 

p 2 -  1 
p3 = aI  7 sin4 0, 

P + 1  

p2-  1 

p2- 1 
p5 = 5.1 7 sin2 2 0 ,  

P + 1  

K I  = c r o r  sin 0 cos 0, 

K 2 = a 1 -  sin 0 C O S ~  0, 

sin2 0, 
P4 = ao7= 

p2- 1 

P + 1  
p 2 -  1 
p2+  1 

2 

Ic3 = a I P - 1  sin3 o cos 0, 
p2 + 1 

A3 = z3 = T4 = 0, (36) 
where the common factors ao, tll and yo are defined by 

a0 = A P43S + 4(P4)), 

a1 = - pA(P4), yo = - PAS. 
(37) 

The 15 viscosity coefficients have now been expressed in 
terms of a small number of parameters and the tilt angle 
0. In equation (37), the only the microscopic friction 
constant 1 is a parameter, introduced by the model, while 
the number density p and orientational order parameters 
are typically known for any practical system. It is 
interesting to note that in this simple approach the 
viscosity coefficients 13, z3 and z4 vanish. This follows 
directly from the neglect of the biaxiality of the orienta- 
tional distribution function. These coefficients are pro- 
portional to the biaxial order parameter P which is very 
small, and we conclude that these viscosity coefficients are 
much smaller than the others, and can usually be neglected 
in the hydrodynamics of smectics C. 

One concludes also that at small tilt angles, the 
coefficients p,,, p l ,  p2 and A1 are expected to be larger than 
the coefficients p3, p.4, p5, KI, K Z ,  ~ 3 ,  Az, T I  and TZ. In 
particular, the coefficients p3 - sin4 0 and K~ - sin3 0 are 
expected to be the smallest. 

It is interesting to note that equation ( 2 )  for the 
symmetric part of the stress tensor with the coefficients 
(24)-(36) is dramatically simplified when one formally 
puts 0 = x/2.  According to equations (24)-(36), in this 
case p = p2 = p5 = K I  = K Z  = K? = Al = T I  = 72 = 0, and 
the symmetric part of the viscous stress tensor ti can be 
written exactly in the same form as the corresponding 
expression for the nematic phase: 

tb = U a v  + UiCrCJCpcqDpq 
f *(a5 + a6)(DckCkCj + Djkckci) 

+ +(a2 + a3)(NZcJ + NJCL), (38) 
where Q = po, (as + a6)/2 = a0 and (a2 + a3)/2 = yd2. 
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202 M. A. Osipov et al. 

The strong analogy between equation (38) and the 
corresponding expression for the nematic stress tensor 
(see, for example, [16]) is not surprising takmg into 
account that we have neglected the biaxiality of the 
distribution function. At 0 = 7d2, the director n is parallel 
to the smectic plane and is equivalent to the c-director, 
forming a 2-dimensional nematic. Then the coupling 
between the director n and the smectic plane normal a is 
determined only by the biaxiality which has been 
neglected in the present theory. 

Thus we conclude that the coefficient zl is expected to 
be close to the nematic Leslie coefficient CII (at the same 
temperature). The coefficient a0 must be close to the sum 
of Leslie coefficients (a6 + ~ ) / 2  and the coefficient yo is 
similar to the sum ( 2 2  + CQ). 

One can now deduce several practical conclusions from 
these approximate results. In particular, one can use the 
present simple approach to estimate the viscosity 
coefficients of the smectic C phase using some experimen- 
tal data obtained for the nematic phase. Indeed, it is, in 
principle, possible to estimate the absolute values of the 
viscosities w, p4 and jb2 by extrapolation from the nematic 
phase, using equations (28) and (34), the Arrhenius law, 
the value of the tilt angle in the smectic C phase and the 
experimental values of the corresponding Leslie 
coefficients in the nematic phase. 

3.2. Antisymmetric part of the viscous stress tensor 
The general continuum expression for the anti- 

symmetric part of the stress tensor is given by equation (3). 
It contains only four independent viscosity coefficients 24, 
2 5 ,  26 and z5 which do not also enter the expression for the 
symmetric part of the stress tensor. These viscosity 
coefficients determine the dissipation related to the 
rotation of the director and of the local smectic plane 
normal. 

In the mean-field approximation, the viscous stress 
tensor is given by equations (10) and (15). The antisym- 
metric part of the tensor t , j  can be written as 

where the non-equilibrium correction h(e) can be deter- 
mined from the stationary solution of the rotational 
diffusion equation (16). 

What remains is only the calculation of the rotational 
viscosity coefficients &, &, A6 and z5; we thus need only 
to evaluate the corresponding part of the stress tensor. In 
order to do this, we consider formally a system without any 
flow, and put i2 = 0 in the main equation (16). The only 
sources of dissipation are now the rotation of the director 
n and the smectic plane normal a which determine the time 
derivative of the distribution function on the left hand side 
of equation (16). Taking into account only the linear terms 

in the correction h(e) we can rewrite equation (16) in the 
simplified form: 

fo = 2&[fO&hI7 (40) 

where we have taken into account that 

fo = Cexp [ - p F / k T ] .  

Neglecting the biaxiality, we can write the mean field 
potential in the Maier-Saupe form, 

UMF(ej = - JoSP2[(e-n)] 

and obtain 

The correction h(e) can now be estimated by expanding 
h(ej in terms of the irreducible tensors composed of the 
components of the unit vector e.  In the lowest order 
approximation one obtains 

h(e) = ho(e n)(e * n), (42) 

Substituting equations (41) and (42) into (40) we obtain 
where ho is a constant coefficient. 

the following estimate for ho: 

2 JoS ho= -- 
kT 2kT + JoS (43) 

Finally, substituting equation (43) into equation (39), we 
obtain the following simple expression for the rotational 
contribution to the viscous stress tensor: 

t; = 20(nzd, - njri,), 

with 

1 
;lo = - p M ( 7  + 5s - 12(P4)) 

70 2 + JoSkT' 

Similarly to the previous section, we again represent the 
director n in terms of the local smectic plane normal a and 
the in-plane director n and obtain a part of the antisymmet- 
ric stress tensor (3) involving the coefficients &, &,A6 and 
15. These rotational viscosity coefficients of the smectic C 
can now be written as 

15 = +Ao sin 2 0 ,  
and 

(47) 

26 = 0. (48) 

We would like to note again that the coefficient 26 vanishes 
in this simple theory. We conclude by analogy with the 
previous section that in the general case 2 6  is proportional 
to the biaxial order parameter and hence much smaller 
than other coefficients. These simple expressions for the 
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rotational viscosity coefficients have been obtained 
neglecting the biaxial part of the mean field potential. In 
the smectic C phase, the mean field potential is generally 
biaxial even when the molecules are uniaxial (see the 
Appendix, for more detail). However, the biaxial part of 
the potential gives a contribution to thc rotational 
viscosities which is proportional to higher powers of the 
tilt angle 0. 

From the practical point of view, the most important 
rotational viscosity coefficient is 2 5 .  It controls the 
azimuthal rotation of the direction around the smectic 
plane normal. In smectic C with fixed layers and fixed tilt 
angle the rotation of the director is associated with the 
following contribution to the entropy production: 

kTS = tif.nirij = Y $ ( $ ) ~ .  (49) 

where 4 is the azimuthal angle and yb = 125 is the familiar 
rotational viscosity of the smectic C phase. 

This rotational viscosity y+ has been measured for a few 
ferroelectric smectic materials using several different 
techniques [5-71. All measurements confirm that yb 
is indeed proportional to sin2@ at small 0. At large 
tilt angles (typically when TAC - T > 20 K)), the ratio 
y&in2 0 is.not a constant, but grows rapidly as a function 
of the tilt angle. This behaviour may be related to large 
biaxiality contributions (mainly from molecular bi- 
axiality) which can become important at large 0. 

4. Discussion 
In this paper we have developed an elementary 

statistical-mechanical theory for the viscosity of smectics 
C using the molecular field approximation and neglecting 
the molecular biaxiality. This theory enables one to 
express all twenty phenomenological viscosity 
coefficients in terms of a few parameters and therefore 
to reduce dramatically the number of independent 
coefficents. From the theory, it is possible to determine the 
signs of the coefficients and to estimate their ratios. The 
results do not, however, permit the calculation of the 
absolute values of the viscosity coefficients, because all 
expressions are proportional to the unknown molecular 
friction coefficient 2. On the other hand, since all other 
constants entering the expressions for viscous coefficients 
are known, a single measurement of one such coefficient 
will allow one to estimate i and, therefore, to predict 
values of all other coefficients. One may also expect 
that the microscopic friction constant 2 is not very 
sensitive to the macroscopic structure of the phase and 
its value is close to that in the nematic phase of the 
same material. 

The strong analogy between the statistical theory of 
viscosity in the nematic and in the smectic C phases can 
be used directly to estimate parameters of the theory. As 
discussed in Q 3.1, the parameters ao, a1 and yo in equations 

(24)-(36) can be approximately considered as ‘continua- 
tions’ of certain combinations of Leslie coefficients from 
the nematic phase. Thus the absolute values of these 
coefficients can, in principle, be estimated by extra- 
polation to a givcn temperature using the Arrhenius law, 
provided that the liquid crystal material forms both the 
smectic C and the nematic phases. 

The viscosity coefficients 2 3 .  2 6 ,  7 3  and t4 are equal to 
zero within the present simple model. In a more complete 
calculation they would be proportional to the biaxial order 
parameter. This quantity has been estimated in the 
Appendix and appears to be very small. Thus these 
particular coefficients, although not identically zero, are 
expected to be much smaller than the others and can be 
neglected in most contexts. 

At small tilt angles 0, different viscosity coefficients 
are proportional to different powers of 0 and thus some 
of them can also be neglected in particular expressions. In 
particular, the coefficients p3 - O4 and ~3 - O3 will be 
very small close to the phase transition. By contrast, the 
coefficients b, p1, p2 and A.1 do not vanish at the smectic 
A to smectic C transition point; these terms also determine 
a dissipation in the smectic A phase. 

In this paper we have essentially neglected biaxiality 
in the smectic C phase. It is interesting to note that 
this biaxiality is determined by two different factors. 
First, the orientational distribution of uniaxial molecules 
in the tilted smectic phase is already biaxial. However, 
because the nematic order parameter is close to unity, 
this type of biaxiality is extremely weak. We show in 
the Appendix that the biaxial order parameter 
P - ( 1  - S ) 2  sin2 0 - 10- and thus can generally be 
neglected in the first approximation. On the other hand, 
there also exists a molecular biaxiality which is deter- 
mined primarily by a flattened molecular shape. The 
interaction between biaxial molecules results in the 
ordering of the short molecular short axes. This contribu- 
tion is non-zero even when S = 1. The molecular biaxiality 
has not been considered in the present paper because the 
existing theory of rheological properties of liquid crystals 
[8,9,17] is confined to systems of uniaxial particles. In the 
general case, the orientational distribution of biaxial 
molecules in a biaxial phase is determined by two tensor 
order parameters which have different relaxation times. 
One of the them is the usual nematic order parameter, 
which characterizes the ordering of molecular long axes. 
The second order parameter charcterizes the ordering of 
molecular planes and must be an independent dynamical 
variable in the Landau-De Gennes theory of the dynamical 
properties of smectics C. 

Since the spontaneous polarization is determined by 
the ordering of short axes, the molecular biaxiality can 
be particularly important in ferroelectric smectics C*. 
Usually the rheological properties of chiral smectics C* 
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are expected to be practically the same as those of 
non-chiral smectics due to the weakness of the chirality 
effects. Indeed, one can readily accept that the dynamics 
of the molecular long axes in the smectic C phase can 
hardly be affected by the appearance of spontaneous 
polarization. On the other hand, in smectics with very high 
polarization, the contribution from the molecular biaxial- 
ity could be very large. This effect may be responsible for 
the strongly non-linear dependence of the rotational 
viscosity of ferroelectric liquid crystals at temperatures 
and tilt angles far from the phase transition point. We plan 
to consider this problem in more detail in a future 
publication. 

This work has been supportd by EPSRC, grant 
GR/H/93712 (M.A.O.) and Unilever PIC (E.M.T.). 

Appendix: Estimates of the biaxial order 
parameter in the smectic C phase composed of 

uniaxial molecules 
In the smectic C phase the biaxial order parameter P is 

given by 

P = (((e-m)' - (e-1)')). (A 1) 

where the unit vector e is in the direction of the molecular 
long axis and the unit vectors m and 1 are orthogonal to the 
smectic plane normal a; m l l l a .  The vector m is also 
normal to the plane of the tilt. The averaging in (A 1) is 
performed with the one-particle distribution function 

f ~ (  I )  = Z -  ' exp [ - PUM"(e"), a, n)], (A 2)  

where UMF( 1 j is the effective field potential. 
The quantity P is the phase biaxial order parameter 

which characterizes the biaxiality of the one-particle 
distribution function in the smectic C phase. The mean- 
field potential is given by equation (1 1): 

UMF(e"), a, n) = p de"'o(e('), e('), a)fi(e(2), a, n), (A 3 )  i 
where Ule('), e(2), a) is the effective pair interaction 
averaged over the distribution of molecular centres in the 
smectic C phase. 

In the general case, the effective interaction potential 
o( 1,2) contains various couplings between the tensors 
Qi;" = e!')ej') - (1/3)6,; (2;' = ej2)ej2) - (1/3)6,, and the 
tensor a,u,. In the first approximation one can write 

o(e('),e('),a) = Jo(Q('):Q(2)) + J2[(a-Q("*a) 

+ (a-Q(2'-a)] + J3(a-Q'')-Q(''-a) 

+ J4(a-Q(').a)(a.Q(2).a), (A 4) 

wherc we have taken into account all invariants which are 
linear in Qr' and Qf). Substitution of equation (A 4) into 

equation (A 3) yields the following expression for the 
mean-field potential: 

UM'(e('', a, n) = Zo(n Q(') - n) 

+ II sin 20(m - Q(') * n) 

+ I2 sin' O(m - Q"' - m), 

with 

~ 

I" = pJoS + pG COS* 0 + $pJ2S COS' 0, 

11 = pG + +pJ'(iS + P), 

1' 1 pG - pJz (3S  - P), 

G = J ~ S  + J ~ ( + S P ~ ( C O S  0) + P sin' O), 

where the unit vector m l n  and (m-a) = sin 0. 

A 5 )  

A 6) 

The first term in equation (AS) is simply the nematic- 
like mean-field potential 

Zo(n.Q"'-n) = +ZOp~(cosw). (A 7 )  

where cos o = (n - el j. 
The last two terms in equation (A5) represent the 

biaxial part of the mean-field potential and can be written 
as 

II sin20(m-Q"'*n) ==Z, sin20(m-el)(n.el) 

= +II sin 2 0  sin 20 cos 6, (A 8) 

and 

I2 sin' O(m -Q'')-m) = f2 sin2 @+P*((m -e l ) )  

= 1' sin2 0 sin' o cos' 4, (A 9) 

where q5 is the azimuthal angle in the plane perpendicular 
to the director n. 

One can now estimate the biaxial order parameter P, 
substituting equations (A 8 j and (A 9) into equation (A 5 )  
and then the mean-field potential (A 5) into equations (A 1) 
and (A 2). Expanding the one-particle distribution func- 
tion powers of the biaxial part of the potential, we obtain 
the estimate 

P - '2 sin2 0 d(cos w )  sin4tofO(cos 0). (A 10) 

Here the maximal distribution function takes the form 

.fo(cos 0)) = Zo- I exp [ - Blosin' w ]  (A 1 1) 

kT I 
with 

d(cos a) exp [ ~ sin' w ]  

Lct us now estimate the integral in equation (A 10) in 
the case of high nematic order. Indeed, in the smectic C 
phase the nematic order parameter S is close to unity and 
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thus the distribution function fo(cos w )  must have a sharp 
maximum at o = O .  Then the main contribution to the 
integral (A 10) comes from the region of small w where 
sin w G 1. In this case it is possible to make the following 
approximate change of variables: 

d(c0s w )  = - +& 

where x = sin2 w. Now the integral in equation (A 10) can 
be readily estimated as 

where a = IdkT. One can also establish a relation between 
the constant a and the nematic order parameter S when 
S - l < l :  

S-  1 =- G 'J d(cos w )  sin2 w exp [ - c1 sin2 w ]  

1 - g G- 1 1  kxe - - 5 @ - 1. (A 13) 

Combining equation (A 12) and (A 13), we obtain the final 
estimate 

where the constant K is of the order of unity. In the smectic 
C phase, the nematic order parameter is typically of the 

order of 0-8-0.9. Therefore the biaxial order parameter P 
is expected to be very small even at large tilt angles 0. 
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